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Abstract

In this paper we consider an inverse scattering problem from an obstacle with impedance boundary condition. Our aim
is to recover the unknown scatterer from the far field pattern iteratively assuming the impedance function. Our method,
while remaining in the framework of Newton’s method, based on a system of two nonlinear integral equations which is
equivalent to the original inverse problem, avoids the need of calculating a direct problem at each iteration. Because of
the ill-posedness of this problem, regularization method for example, Tikhonov regularization, is incorporated in our solu-
tion scheme. Several numerical examples with only one incident wave are given at the end of the paper to show the fea-
sibility of our method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The inverse scattering problem which aim is the recovering of the geometry of the obstacles or the inves-
tigating of the physical properties of the scatterers has attracted more and more attentions in the past decades
not only because of its pure mathematical interest but also of its applicability in the real world. The inverse
scattering problem that we are considering in this paper is to find an impedance scatterer in the domain con-
cerned. The impedance boundary conditions can be used to model practical problems like surface coating
which has its application in detection of buried objects, antenna design or the analysis of the earth surface
(see [14]), for example. In [1] a direct method was given to determine the impedance function for an arbitrary
fixed boundary. In this paper, on the other hand, we try to recover the unknown scatterer for an arbitrary
given impedance function.

In the paper from Kress and Rundell [8], an inverse impedance problem for recovering both the scatterer
and the impedance are considered. Based on the regularized Newton’s method, their method needed to solve a
direct problem at each iteration step. Although the problem was splitted into two smaller parts, it is still time
consuming. Recently, Kress and Rundell [9] proposed a new method which is also a Newton-like method, but
it avoids the need of a forward solver at every iteration. Based on the gap functional, they introduced a system
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doi:10.1016/j.jcp.2007.07.030

E-mail address: kmlee@math.ccu.edu.tw

mailto:kmlee@math.ccu.edu.tw


432 K.-M. Lee / Journal of Computational Physics 227 (2007) 431–439
of nonlinear integral equations which is equivalent to the original inverse problem by putting an auxiliary
curve around the obstacle. Thus to solve the inverse problem one has only to solve the equivalent system. This
method has been extended to other boundary conditions and cracks, see [4,5]. Using the far field pattern, a
different method was proposed in [10] to solve a Neumann problem which also leads to a system of two non-
linear integral equations with the advantage of no need of an auxiliary curve. In this paper we’d like to extend
this method to the more general case of an impedance problem.

At this place we want to mention that there are several methods for treating impedance problem. The treat-
ment in [13] recovered both the impedance and the scatterer, however, far field data at many frequencies were
needed. Another method developed by Colton and Kirsch [2] reconstructed the unknown scatterer without
knowledge of the type of the boundary condition. The drawback of their method lies in the fact that all mea-
surements from all incident directions are needed. More recently, the hybrid method described in [12] which
reformulates the inverse problem as an optimization problem, recovers successfully both the impedance and
the obstacle.

The plan of the paper is as follows. For the sake of completeness and also the introduction of notations, in
Section 2 we will briefly summarize the main results of the direct problem. In Section 3 we will formulate the
inverse scattering problem and derive an equivalent system of two nonlinear integral equations whose solution
is the solution of the original inverse problem. The numerical scheme will be then given in Section 4 which is
followed by some numerical examples in the final section.

2. Direct scattering problem

Problem 1 (Direct impedance scattering problem). Given an incident plane wave ui(x,d):¼eikÆx, dæ with a fixed
wave number k 2 R and an incident direction d 2 X :¼ fx 2 R2jjxj ¼ 1g, the unit circle in R2, find the scattered
field us such that the total field u:¼ui + us satisfies the Helmholtz equation
Duþ k2u ¼ 0 ð1Þ
in the exterior of the scatterer D and the impedance boundary condition
ou
om
þ ikku ¼ 0 on oD ð2Þ
for an impedance function k 2 C0,f(oD) with Imð�kkÞP 0 on oD. The scattered field us itself fulfills the Som-
merfeld radiation condition
lim
r!1

ffiffi
r
p ous

om
� ikus

� �
¼ 0; r ¼ jxj ð3Þ
uniformly in all directions.

Using integral equation method, the direct problem can be uniquely solved. Firstly, we define a solution
ansatz by a combination of a double layer potential and a single layer potential in terms of a yet to be deter-
mined density function u 2 C1,f(oD)
usðxÞ :¼
Z

oD
Uðx; yÞuðyÞdsðyÞ þ i

Z
oD

oUðx; yÞ
omðyÞ uðyÞdsðyÞ ð4Þ
where
Uðx; yÞ :¼ i

4
H ð1Þ0 ðkjx� yjÞ; x 6¼ y
denotes the fundamental solution of the Helmholtz equation in R2 in terms of the Hankel function H ð1Þ0 of the first
kind and of order zero. By substituting this ansatz into the impedance boundary condition (2) and using the jump
relations of the layer potentials we see that the density u is required to be a solution of the following equation:
fiT þ K 0 � I þ ikkðS þ iK þ iIÞgu ¼ f ð5Þ
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where
f ¼ �2
oui

om
þ ikkui

� �
and the operators S, K, K 0, T are defined by
SuðxÞ :¼ 2

Z
oD

Uðx; yÞuðyÞdsðyÞ ð6Þ

KuðxÞ :¼ 2

Z
oD

oUðx; yÞ
omðyÞ uðyÞdsðyÞ ð7Þ

K 0uðxÞ :¼ 2

Z
oD

oUðx; yÞ
omðxÞ uðyÞdsðyÞ ð8Þ

TuðxÞ :¼ 2
o

omðxÞ

Z
oD

oUðx; yÞ
omðyÞ uðyÞdsðyÞ ð9Þ
The unique solvability of the boundary integral equation (5) can be derived from the Riesz theory. We refer to the
monograph [3]. For the unique solvability of the direct impedance problem, we have the following theorem.

Theorem 1. The direct impedance Problem 1 is uniquely solvable and the solution is given by the solution ansatz

(4) with the density function u 2 C1,f(oD) which solves (5).

At this place we want to point out that in the scattering theory, the behavior of the scattered field at a large
distance is of particular interest at least for the data availability. The far field pattern describes the behavior of
the scattered wave at the infinity
usðxÞ ¼ eikjxjffiffiffiffiffi
jxj

p u1ðx̂Þ þO
1

jxj

� �� �
jxj ! 1
uniformly in all directions x̂ 2 X. The one-to-one correspondence between the radiating waves and their far
field patterns is established by the Rellich’s lemma. Making use of the asympototics of the Bessel functions,
the far field pattern of the scattered field for the impedance problem is easily found to be
u1ðx̂Þ ¼ n1

Z
C

e�ikhx̂;yiuðyÞdsðyÞ þ in2

Z
C
hmðyÞ; x̂ie�ikhx̂;yiuðyÞdsðyÞ ð10Þ
with the constants n1 ¼ 1þi
4
ffiffiffiffi
kp
p ; n2 ¼ 1�i

4

ffiffi
k
p

q
and the density function u given by Theorem 1.

To reduce the hypersingularity of the operator T, we use the Maue’s identity to split it into two milder parts
(for a proof of this splitting, see for example Theorem 7.29 in [7])
Tu ¼ o

o#
S

ou
o#
þ k2hm; Sumi;
where # is the unit tangent vector. The integral equation (5) now becomes
i
o

o#
S

ou
o#
þ ik2hm; Sumi þ K 0u� uþ ikkðS þ iK þ iIÞu ¼ f ð11Þ
This equation can be numerically solved by the Nyström method as in [7], for example.

3. Inverse scattering problem

After introducing the notations in the last section, we consider the following inverse problem:

Problem 2 (Inverse impedance problem). Determine the scatterer D if the far field pattern u1 is known for one
incident plane wave assuming a prescribed impedance function k.

For our inverse problem it is noted that there is no uniqueness result available. Although it is widely
believed that the inverse problem for only one incident wave is uniquely solvable, it is still an open prob-
lem. However, unique solvability of the inverse scattering problem with an infinite number of linearly
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independent incident fields is guaranteed which we refer to [8]. One of the major advantages of Newton’s
method is that it can handle the inverse problem with just one incident wave. Based on the Newton’s
method, our method should inherit this advantage. This leads to the setting of our inverse problem with
just one incident wave.

Before we start to solve the inverse problem, we first reformulate it into an equivalent system of equations
which can be treated mathematically. In terms of the unknowns oD, u, we define the following two boundary
integral operators:
B : C2ðoDÞ � C1;fðoDÞ ! C0;fðoDÞ

and
F1 : C2ðoDÞ � C1;fðoDÞ ! C1ðXÞ

by
BðoD;uÞ :¼ i
o

o#
S

ou
o#
þ ik2hm; Sumi þ K 0u� uþ ikkðS þ iK þ iIÞu ð12Þ
and
F1ðoD;uÞðx̂Þ :¼
Z

oD
ðn1 þ in2hmðyÞ; x̂iÞe�ikhx̂;yiuðyÞdsðyÞ ð13Þ
Note that the operator B is just the boundary operator which maps the unknowns to the impedance boundary
data. The operator F1 is just the far field operator which is similar to that defined in the literatures but with
two unknowns.

After defining the operators, let us consider the following system of operator equations:
BðoD;uÞ ¼ � oui

om joD

F1ðoD;uÞ ¼ u1

(
ð14Þ
If oD solves the inverse scattering problem, then it follows directly from the solution theory of the direct prob-
lem that system (14) is satisfied. Conversely, assume that the pair (oD,u) solves (14). Then the first part of (14)
ensures that the total field u defined in Theorem 1 satisfies the impedance boundary condition on oD. The sec-
ond equation in (14) then avouches the correct far field pattern for the scattered field us. We have thus the
following main theorem.

Theorem 2. oD is the solution of the inverse problem if and only if oD, u solve the system of nonlinear integral

Eq. (14).
4. Numerical treatment

To simplify further discussions, let’s first parameterize the boundary of the unknown scatterer with a two
times continuously differentiable injective function c defined on [0,2p] with ic 0i 6¼ 0. With the substitution
w(t) = u(c(t)), the system (14) takes the following parameterized form:
A1ðc;w0Þ þ A2ðc;wÞ � kkw� w ¼ aðcÞ
A1ðc;wÞ ¼ u1

�
ð15Þ
where the integral operators Ax,x = 1,2,1 are defined by
Axðc; vÞ :¼
Z 2p

0

Kxðs; rÞvðrÞdr ð16Þ
with corresponding kernels Kx which can be easily deduced from (14). Since the system (14) is nonlinear,
a linear model can be obtained by the Newton’s method, i.e., we have to solve the following linearized
system:
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A1ðc;w0Þ þ A1ðc; v0Þ þ A01ðc;w
0; qÞ þ A2ðc;wÞ þ A2ðc; vÞ þ A02ðc;w; qÞ

�kkðwþ vÞ � ðwþ vÞ ¼ aðcÞ þ a0ðc; qÞ
A1ðc;wÞ þ A1ðc; vÞ þ A01ðc;w; qÞ ¼ u1

8><
>: ð17Þ
where the Fréchet derivatives A 0x of Ax, x = 1,2,1 can be obtained by the Fréchet derivatives of the corre-
sponding kernels as in [11]. Numerically this system is solved iteratively: with a current approximation (w,c),
the system (17) has to be solved for the pair (v,q). The updated data are then given by w + v for the density
function of the integral operators and c + q for the boundary of the unknown scatterer. For brevity, we re-
write the system (17) in the operator form:
Aðv; qÞ ¼ Y ð18Þ

Since this linear equation of the first kind is still ill-posed, we have to incorporate some regularization scheme.
Instead of solving (18) directly, we solve the following regularized equation:
aI 0

0 bI

� �
þA�A

� �
v

q

� �
¼ A�Y ð19Þ
with two to be determined regularization parameters a and b. Numerically we solve this equation by Nyström
method which will be described in details in the next section. At this place we want to point out that from the
numerical point of view our schema is very attractive. Our method distinguishes from the traditional Newton-
type methods in the way that instead of solving a direct problem at each step, the Fréchet derivatives of the
integral operators are computed directly by solving the system of integral equation (17). This linear system can
be easily solved for example by Gaussian elimination.

5. Numerical results

In this final section of the paper we will demonstrate the efficiency of our method by some examples. In all
our examples, we use just one incident wave to reconstruct the scatterer (see also [6] for a sound-soft obstacle).
The direct problem is solved once for each example to provide the synthetic far field pattern as the input data
for our inverse algorithm. The forward problem can be solved by simply applying the Nyström method to
(11). In order to avoid committing an inverse crime, the number of collocation points used in the inverse solver
is chosen to be different from that of the forward solver. For the finite dimensional approximate solution, we
define the following space of trigonometric functions:
T nðKÞ ¼ w : ½0; 2p� ! K wðrÞ ¼
Xn

k¼0

ak cos krþ
Xn�1

k¼1

bk sin kr; ak; bk 2 K

					
)(

for K ¼ R;C:
The solution space for the density function of the integral operators is taken to be the space T nðCÞ. For the
parameterization of the unknown boundary, we choose the space
V m ¼ T mðRÞ � T mðRÞ

Generally speaking, for the sake of solvability of the system (19), the parameter m must satisfy the condition
m 6 n/2. In the actual computation, m is much smaller than n.

In all our examples, the incident direction d is taken to be 1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p
 �t

. The quadrature points for the
direct solver is chosen to be 64 equidistant points in [0,2p]. The far field pattern at 40 different directions
for the same incident wave are calculated, i.e., u1ðx̂j; dÞ; j ¼ 1; 2; . . . ; 40. For the inverse problems, the number
of collocation points is taken to be n = 32. As the starting curve, that is, the initial guess for the regularized
Newton’s method, we simply take circles with different radius q. The stopping criterion for the iterative scheme
is given by the relative error
kcNþ1 � cNk2

kcNk2

< �
which is taken to be 10�5 in all examples. The regularization parameters a for the density w and b for the
boundary of the scatterer c are determined by trial and error. Note also that during the reconstruction, all
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Fig. 1. k = 1, k = 1, a = 1.95E�3, b = 9.77E�4, N = 8.
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Fig. 2. k = sint, k = 1, a = 1.53E�5, b = 2.98E�8, N = 10.
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parameters (m,a,b) are held fixed. In all our figures below, the dotted line (blue)1 represents the initial guess.
We denote by the dashed line (red) the true solution and by the solid line (black) the reconstruction.

Example 1. For the first example, we take the ellipse C = (0.4 cos t, 0.3 sin t), t 2 [0,2p]. As the initial guess for
the Newton’s method, we choose the circle with radius q = 0.6. For the case where the impedance k(t) = 1, the
numerical computation stops at N = 8 with the regularization parameters a = 1.95E�3, b = 9.77E�4 (Fig. 1).
For the case where the impedance k(t) = sin t, our algorithm stops at N = 10 with the regularization
parameters a = 1.53E�5, b = 2.98E�8 (Fig. 2). In this example we see that the convergence of our method is
very fast. Only few iterations are needed to achieve the desired result both for the case where k is a constant
and the case of a function. In every iteration step, we only have to solve the regularized Eq. (19) once for the
pair (v,q).
1 For interpretation of color in Figs. 1–6, the reader is referred to the web version of this article.
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Example 2. For the second example, we take a peanut parameterized by
C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 t þ 0:25 sin2 t

p
� cos t;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 t þ 0:25 sin2 t

p
� sin t

� 
; t 2 ½0; 2p�:
We start with the circle of radius q = 1.2. For the case where the impedance k(t) = 1, the numerical compu-
tation stops at N = 20 with the regularization parameters a = 5.2E�12, b = 3E�13 (Fig. 3). For the case where
the impedance k(t) = sint, our algorithm stops at N = 29 with the regularization parameters a = 7.28E�12,
b = 7.28E�12 (Fig. 4). Again we see that the convergence of our method is fast, even for this non-convex
scatterer.
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Fig. 3. k = 1, k = 1, a = 5.2E�12, b = 3E�13, N = 20.
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Fig. 4. k = sint, k = 1, a = 7.28E�12, b = 7.28E�12, N = 29.
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Example 3. In the last example, we consider the reconstruction with far field data contaiminated by 3%
Gaussian noise. For this purpose we take again the ellipse C = (0.4 cost, 0.3 sint), t 2 [0,2p]. As in the first
example, the circle with radius q = 0.6 serves as the starting curve. For the constant impedance k = 1, the
numerical computation achieves the desired result at N = 19 with the regularization parameters
a = 1.22E�4, b = 6.1E�5 (Fig. 5). For the impedance function k(t) = sint, the required accuracy is obtained
at N = 19 with the regularization parameters a = 9.54E�7, b = 1.22E�4 (Fig. 6). This example demonstrates
the robustness of the numerical method. The algorithm converges quickly also for erroneous data.

From the examples above, we conclude that our method is fast, accurate and stable. From the schema we
also see that the method is conceptually very simple and easy to implement. Finally we want to point out that
the choice of the regularization parameters a, b are by try and error. Hence it is not guaranteed that they are
the best possible. Furthermore, the parameters are very small as compared to those in [10]. This reflects the
fact that the impedance problem is more subtle than the Dirichlet or the Neumann problem.
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Fig. 5. k = 1, k = 1, a = 1.22E�4, b = 6.1E�5, N = 19.
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Fig. 6. k = sint, k = 1, a = 9.54E�7, b = 1.22E�4, N = 19.
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